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Figure 1. Originally proposed (1) and revised (2) s
The first total synthesis of tovophyllin B (2), an antimicrobial xanthone derived from mangosteen, has
been accomplished through a convergent strategy from building blocks 6 and 7 involving lithium-med-
iated coupling, dehydrative cyclization, and 6p electrocyclization as key steps.

� 2008 Elsevier Ltd. All rights reserved.
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Tovophyllin B, a prenylated pentacyclic xanthone, was first iso-
lated in 1972 from the wood of Tovomita macrophylla by de Oliveira
et al.1 The originally proposed structure (1; Fig. 1) was corrected in
1975 on the basis of chemical and spectroscopic data to the cur-
rently accepted structure (2, Fig. 1) in which one of the phenolic
groups is H-bonded to the carbonyl moiety of the molecule.2 Re-
cent investigations of the antituberculosis potential of the fruit
hulls of mangosteen (Garcinia mangostana), traditionally used in
Thai folk medicine for alleviation of a number of maladies, led to
re-isolation of this natural product, and revealed that tovophyllin
B (2) possesses a significant inhibitory activity against Mycobacte-
rium tuberculosis (MIC = 25 lg/mL).3 Therefore, as a lead compound
for drug discovery, the total synthesis of tovophyllin B and its ana-
logs is deemed important. In this Letter, we report a short and effi-
cient total synthesis of this molecule that may also serve to prepare
designed analogs.

Scheme 1 shows the retrosynthetic analysis of the molecule of
tovophyllin B (2) in which a 6p electrocyclization (a) plays the role
of casting the final heterocyclic ring in the synthetic direction
(3?2). An aldol/dehydration sequence (b) then traces 3, expected
to be a transient intermediate, back to xanthone 4 and prenal
(40). Disconnection of the indicated carbon–oxygen bond within
ll rights reserved.
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xanthone 4 through a retro dehydrative cyclization leads to bisaryl
ketone 5, whose disassembly through a retro lithium-mediated
coupling as shown reveals benzaldehyde 6 and benzopyran deriv-
ative 7 as the required building blocks for the projected synthesis.

Scheme 2 summarizes the synthesis of advanced intermediate
bisaryl ketone 5. Thus, O-propargylation4 of the readily available
phenol 8 (prepared from 2,4-dihydroxybenzaldehyde in three
steps)5 with methyl 2-methyl-3-yn-2-yl carbonate (9) in the
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Scheme 1. Retrosynthetic analysis of tovophyllin B (2): (a) 6p electrocyclization;
(b) aldol/dehydration.
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Scheme 2. Synthesis of bisaryl ketone 5. Reagents and conditions: (a) 9 (3.0 equiv),
DBU (3.0 equiv), CuCl2 (0.01 equiv), MeCN, 0 �C, 12 h; (b) toluene, 140 �C, 48 h, 74%
(over two steps); (c) nBuLi (1.3 equiv), THF, 25 �C, 15 min; then prenyl bromide
(1.5 equiv), THF, 25 �C, 2 h, 86%; (d) nBuLi (1.5 equiv), THF, 25 �C, 15 min; (e) 6
(1.5 equiv), THF, �78 �C, 15 h, 58%; (f) DMP (1.4 equiv), NaHCO3 (5.0 equiv), CH2Cl2,
25 �C, 2 h, 80%; (g) 10% Pd/C (0.34 equiv), Et3 N (1.0 equiv), HCO2H (32 equiv),
acetone, 25 �C, 1.5 h, 89%; (h) CSA (5.0 equiv), MeOH, 25 �C, 8 h.
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Scheme 3. Completion of the total synthesis of tovophyllin B (2). Reagents and
conditions: (a) impregnation on a silica gel plate (1.5 h); then elution with EtOAc,
65% (for two steps), (b) CaO (7.5 equiv), prenal (40) (15 equiv), MeOH, 25 �C, 16 h,
55%.
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presence of DBU and catalytic amounts of CuCl2 proceeded
smoothly to afford 1,1-dimethylpropargyl ether 10, which, upon
heating in toluene at 140 �C, underwent Claisen rearrangement,
leading to 2,2-dimethylchromene 11, in 74% overall yield for the
two steps.6

Regioselective lithiation of 11 facilitated by the two OMOM
groups (nBuLi, THF, 25 �C), followed by quenching of the resulting
lithiated species with prenyl bromide furnished prenylated chro-
mene 7 in 86% yield. Pleasantly, the generation of the lithiated spe-
cies 12 from 7 proceeded smoothly on exposure of the latter to
nBuLi in THF at 25 �C and was essentially complete within
15 min (ca. 95% deuterium incorporation upon quenching with
D2O). Addition of bis-benzyl-MOM-protected benzaldehyde deriv-
ative 6 (prepared from phloroglucinol carboxaldehyde in two
steps)7 to lithiated species 12 at �78 �C furnished coupling product
13 (58% yield),8 whose hydroxy group was oxidized with Dess–
Martin periodinane to afford ketone 14,9 in 80% yield. Initial at-
tempts to selectively remove the benzyl groups from the latter
compound with hydrogen and a variety of catalysts failed primar-
ily due to the interference of the olefinic bonds residing within the
molecule. This problem was, however, solved through the employ-
ment of a palladium-catalyzed transfer hydrogenation protocol
utilizing a triethylammonium formate/formic acid buffer system.10

Under these conditions, the two benzyl groups were cleanly
cleaved from 14 to form the corresponding diphenol (15, 89%
yield), from which the MOM groups were removed by exposure
to CSA in MeOH at ambient temperature, leading to the desired tri-
cyclic precursor 5.

The final steps of the synthesis of tovophyllin B (2) are shown in
Scheme 3. Thus, cycloetherification of 5 under the influence of sil-
ica gel (impregnation of the substrate on a silica gel plate, followed
by elution with EtOAc)11 furnished, through dehydration, xanthone
49 in 65% yield (for two steps). The missing 2,2-dimethylchromene
ring of the growing molecule was finally forged through a cascade
sequence involving CaO-induced aldol-type reaction12 of xanthone
4 with prenal (40) that proceeded via intermediates 16 and 3 to af-
ford the target molecule (2) in 55% overall yield as shown in
Scheme 3. Synthetic tovophyllin B (2) exhibited identical physical
properties to those reported for the naturally derived material.1,2

The described chemistry demonstrates the power of cascade
reactions in total synthesis,13 and provides a practical route to
tovophyllin B (2) and related compounds, including designed ana-
logs for biological investigations.
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